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Abstract. We consider the coupled system of the higher-order nonlinear Schrödinger equation
and Maxwell–Bloch equations with pumping, which governs the nonlinear wave propagation in
erbium-doped optical waveguides in the presence of important higher-order effects. We derive the
Lax pair with a variable spectral parameter and the exact soliton solution is generated from the
Bäcklund transformation.

The dynamics of a nonlinear short-optical-pulse envelope in a fibre is described by

iqz +
k′′

2
qtt + β|q|2q +

ik′′′

6
qttt + iγ (|q|2q)t + iγs(|q|2)tq = 0 (1)

where q represents the complex envelope amplitude, t and z are the time and distance along the
direction of propagation, k′′ is the second derivative of the axial wavenumber k with respect
to the angular frequency ω0 and describes group velocity dispersion (GVD), k′′′ = ∂3k/∂ω3

at ω0 describes higher-order dispersion, β = n2ω0/cAeff is the self-phase modulation (SPM)
parameter, where n2 is the Kerr coefficient and c is the speed of light, Aeff is the effective
core area of the fibre, γ = 2β/ω0 describes Kerr dispersion (also called self-steepening) and
γs represents the delayed nonlinear process. The imaginary part of γs describes stimulated
Raman scattering.

Equation (1) becomes the nonlinear Schrödinger (NLS) equation when terms proportional
to k′′′, γ and γs are negligible [1–3]. However, in some regions, the role of k′′′ becomes
important. In particular, to describe the effects of pulse broadening in the frequency region
where k′′ is close to zero, one needs to take k′′′ to be non-negligible [4, 5]. The last two
terms proportional to γ and γs become important for short-pulse propagation over long
distances [6,7]. Physically, GVD and higher-order dispersion are linear effects, which spread
the pulse temporally. SPM, Kerr dispersion and delayed nonlinear process are nonlinear
effects, which spread the pulse in the frequency domain. Unlike GVD and SPM, higher-order
dispersion, Kerr dispersion and the delayed nonlinear process spread the pulse asymmetrically.
In the absence of higher-order effects, GVD and SPM balance each other in the anomalous
dispersion regime to form optical bright solitons. Equation (1) as such, with all the effects, is
called the higher-order nonlinear Schrödinger (HNLS) equation. In [8,9], the HNLS equation
is considered and soliton solutions have been derived for a particular condition.
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In 1967, McCall and Hahn [10] explained a special type of lossless pulse propagation in
two-level resonant media. They showed that if the energy difference between the two levels
of the medium coincides with the optical wavelength, then coherent absorption takes place.
The medium becomes optically transparent to that particular wavelength, which is called self-
induced transparency (SIT). Maxwell–Bloch (MB) equations explain the process of SIT. In [11]
MB equations with pumping and damping have been considered and the explicit form of the
Lax pair has been presented with a variable spectral parameter. Burtsev and Gabitov [11]
have clearly explained the need for optical pumping during the propagation of optical pulses
in resonant atoms.

If the fibres are doped with erbium atoms, then SIT can also be induced in optical
fibres. This type of soliton pulse propagation was shown for the first time by Maimistov
and Manykin [12] in 1983 and many other results were also reported on the NLS-MB fibre
system [13–20]. Nakazawa et al [21, 22] experimentally observed the coexistence of NLS
solitons and SIT solitons in erbium-doped resonant fibres. In [23–25], the possibility of
coexistence of an NLS soliton and an SIT soliton with some higher-order terms are also
shown. We have considered the HNLS-MB equations already [23, 25] and shown that they
allow soliton-type pulse propagation for a particular choice of parametric condition.

Here, in this paper, we consider the HNLS-MB equations with pumping and show that,
for a reduced dynamical equation, the erbium-doped fibre system allows soliton-type pulse
propagation with pumping. The explicit form of the Lax pair for HNLS-MB equations with
pumping is presented. To derive the initial soliton pulse shape and speed, the exact soliton
solution is derived from the Bäcklund transformation.

HNLS-MB equations with pumping take the form

iqz +
k′′

2
qtt + β|q|2q +

ik′′′

6
qttt + iγ (|q|2q)t + iγs(|q|2)tq = 2i〈p〉

pt = 2iωp + 2qη

ηt = −(qp∗ + q∗p) − c

(2)

where p and η are given by ν1ν
∗
2 and |ν1|2 − |ν2|2 respectively (ν1 and ν2 are wavefunctions

of two energy levels of erbium atoms). The bracketed term 〈· · ·〉 denotes averaging over the
entire frequency range,

〈p(z, t;ω)〉 =
∫ ∞

−∞
p(z, t;ω)g(ω) dω∫ ∞

−∞
g(ω) dω = 1

(3)

where g(ω) is the uncertainty in the energy levels of the erbium atoms.
Kodama [26] has shown that with suitable transformation and omitting the higher-order

terms and with the condition k′′ = β, HNLS equation (1) reduces to the Hirota equation [27].
In a similar way equation system (2) can be reduced to a coupled system of the Hirota equation
and MB equations with pumping of the following form:

qz = iβ( 1
2qtt + |q|2q) + ε(qttt + 6|q|2qt ) + 2〈p〉

pt = 2iωp + 2qη

ηt = −(qp∗ + q∗p) − c.

(4)

Here we have considered only a special choice of parametric values for the coefficients of the
higher-order terms for which the equation system is completely integrable.
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The linear eigenvalue problem associated with equation (4) is constructed as

∂�

∂t
= U�

� = ( ψ1 ψ2 )
T

(5)

where

U =
( −iλ q

−q∗ iλ

)
. (6)

λ is the variable spectral parameter given by

λz =
〈 c

λ + ω

〉
λt = 0. (7)

The space evolution of eigenfunction � is given by

∂�

∂z
= V� (8)

V = [−4iελ3 + iβλ2 + ε(qq∗
t − qtq

∗)]
( −1 0

0 1

)
+ (−4ελ2 + βλ + 2ε|q|2)

(
0 q

−q∗ 0

)

+

[
−2iελ + i

(
β

2

)] ( |q|2 qt

q∗
t −|q|2

)
+ ε

(
0 qtt

−q∗
t t 0

)
+ i

( 〈 η

λ+ω 〉 〈 −p

λ+ω 〉
〈−p∗
λ+ω 〉 〈 −η

λ+ω 〉
)
.

(9)

The compatibility condition Uz − Vt + [U,V ] = 0 gives equation system (4).
Thus from the existence of the linear eigenvalue problem it is clear that equation system (4)

is completely integrable.
In order to construct the Bäcklund transformation of equation (4), let us write down

equation (5) in terms of the Riccati equation. For this purpose, we introduce a new variable
(or pseudopotentional)

� = ψ1

ψ2
. (10)

Equation (10) yields

�t = −2iλ� + q + q∗�2. (11)

Now transformations of variables � → �′, λ → λ′ and q → q ′ which keep the form
of equation (11) invariant are sought. The simplest transformation can be tried by setting
�′ = �, λ′ = λ∗ and looking for q ′ in the form

q − q ′ = 2i(λ − λ∗)�
1 + |�|2 . (12)

Equation (12) defines the Bäcklund transformation for equation (4). Here the primed
quantities refer to N -soliton solutions and the unprimed quantities refer to (N − 1)-soliton
solutions. To construct the soliton solution of equation (4), we start with the zero-soliton
solutions q = p = 0 and η = ±1 (pure states). By substituting the above conditions in
the spatial and temporal eigenproblems, the explicit forms of q(1), p(1), η(1) and �(0) are
obtained. This procedure can obviously be continued; it furnishes in a recursive manner all
the higher-order soliton solutions and the associated wavefunction can also be generated. For
instance, the solution of equation (12) is found to be (with λ = α + iζ )

�(0) = exp[ψ(z, t) + iθ(z, t)] (13)
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where ψ(z, t) and θ(z, t) are given by

ψ(z, t) = 2ζ t − 2
∫ [

4εζ(3α2 − ζ 2) + 2βαζ −
∫ ∞

−∞

ζ

ζ 2 + (α − ω)2
g(ω) dω

]
dz (14)

θ(z, t) = 2αt + 2
∫ [

4εα(α2 − 3ζ 2) + β(α2 − ζ 2) −
∫ ∞

−∞

(α − ω)

ζ 2 + (α − ω)2
g(ω) dω

]
dz. (15)

So one can generate a new set of one soliton solution for equation (4) from (12), which is
obtained from the trivial one,

q(z, t) = 2ζ sech(ψ) exp(iθ) (16)

p(z, t;ω) = 2ζ [ζ sinh(ψ) + i(α − ω) cosh(ψ)] exp(iθ)

ζ 2 sinh(ψ) + (α − ω)2 cosh2(ψ) + ζ 2/4
(17)

η(z, t;ω) = ζ 2 sinh2(ψ) + (α − ω)2 cosh2(ψ) − ζ 2/4

ζ 2 sinh2(ψ) + (α − ω)2 cosh2(ψ) + ζ 2/4
. (18)

Here α and ζ are velocity parameters related to the soliton pulse.
Thus, from the explicit form of the soliton solutions (16)–(18), one can calculate the initial

pulse shape, soliton velocity, pulse intensity etc. In equations (16)–(18), if we take the limit
ε → 0, then we obtain the soliton solution for the coexistence of NLS solitons and SIT solitons
with pumping. For the condition λz = 0, the soliton solution (16)–(18) goes to the limit of
solitons in erbium-doped fibres with higher-order effects without pumping [24].

To conclude, we have considered the HNLS-MB equations with pumping which describe
the wave propagation of a nonlinear optical field in an erbium-doped fibre medium with
important higher-order effects. The linear eigenvalue problem associated with the equation
system is derived with a variable spectral parameter. The exact form of the soliton solution is
also derived using the Bäcklund transformation.
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